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Abstract
In this paper, we examine the application of trans-
fer learning in the context of deep reinforcement
learning. Specifically, we apply transfer learning
to different DQN and IMPALA architectures in
the context of Atari games Breakout and Pong.
Our goal is to determine how a pre-trained Deep
Q-Network from one game can be used to im-
prove learning outcomes in other game settings.
We show that transfer learning of low level layers
provides noticeable boosts to initial learning per-
formance for DQN, but inconclusive results for
IMPALA.

1. Introduction
Reinforcement learning is an area of machine learning

concerned with how agents can take good actions in un-
known environments. During the learning and evaluation
process, the model and architecture must consider factors
such as long-term/delayed rewards, and trade-offs between
exploiting known actions versus exploring new or rarely
tested ones. Often times, models in reinforcement learning
require long training times and may diverge from an opti-
mal agent, resulting in agents that underperform or whose
actions produce high variance reward values during training.

In this context, we explore Deep Q-learning in different
Atari games. Q-learning, a learning method that attempts to
learn a value function for state-action pairs, has been shown
to perform well in generalized settings. However, basic
Q-learning approaches such as linear function approxima-
tors do not work well in more complex environments such
as those in Atari games. To solve this, Deep Q-learning
represents the Q-function using a deep neural network that
takes as input a raw state (e.g. pixels from a game) and
outputs the Q-value for each possible action. Having been
shown to work well on Atari games in the past, we explore
if modified training routines and architectures can lead to
better learning performance in different game settings.

In this work, we focus on the Atari games Breakout and
Pong. In both games, the main concept is moving a pad-
dle towards a ball in order to maximize a scoring objective.
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Specifically, we investigate how transfer learning on deep
networks, a technique heavily explored in image recognition
tasks (He et al., 2015), applies to the aforementioned games.
Transfer learning aims to take a pretrained set of weights on
task A and use those weights to reduce the training time to
learn task B. As an example, given known weights that are
pretrained on the ImageNet dataset, it is possible to tailor
a task-specific or environment-specific image recognition
model with relatively limited training. The theory behind
transfer learning is that since the earlier layers of a convolu-
tional neural network pertain to recognizing local patterns in
images, the same filters remain relevant even when the learn-
ing task is altered. Transfer learning in different contexts
can considerably improve training times, allow for faster
and more stable convergence, and reduce the need for large
dataset collection.

Our second focus is to identify how transfer learning
applies across different architectures, and to different trans-
ferred layers. We explore across architectures with varying
depths of convolutional layers, while transferring different
layer weights.

2. Related Work
2.1. Reinforcement Learning

In Reinforcement Learning: An Introduction (Sutton
& Barto, 1998) by Sutton and Barto, learning agents adapt
to take sequential actions with the goal of maximizing an
often delayed reward signal. To tackle environments with
larger state and action spaces, more generalized reinforce-
ment learning architectures have been developed, such as
the deep q-learning network (DQN) (Mnih et al., 2013)
which learned how to play multiple Atari games and surpass
human records. By utilizing convolutional layers (LeCun,
2019) commonly applied to image recognition tasks due to
their ability to discern higher level features, coupled with
experience replay enabling agents to learn more information
from the same dataset, advancements in deep q-learning
have allowed agents to learn game features without man-
ually hand crafting them. Deep q-learning architectural
improvements have been furthered (Hessel et al., 2017) by
the introduction of double-q-learning, which provides the
agent with a stable target network to optimize towards, and
dueling networks, which help learn more informed state and
action values.
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2.2. Transfer Learning
Transfer learning allows the domains, tasks, and data

distributions used in different training and testing routines
to learn from each others’ similarities. The fundamental mo-
tivation of transfer learning focuses on the need for machine
learning methods that are able to retain and reuse previously
learned information (Thrun & Pratt, 1998). In this definition,
transfer learning aims to extract the knowledge from one
or more source tasks and applies the knowledge to a target
task. This is in contrast to multi-task learning (Caruana,
1997), which aims to learn all of the source and target tasks
simultaneously.

We observe that Pong, a relatively simpler game in
terms of objective and game mechanics in comparison to
Breakout, is able to converge rather quickly. We are inter-
ested in determining if transferring the convolutional layers
from Breakout to Pong will improve learning performance
outcomes, as Breakout must handle more complex game
mechanics than Pong. We are also interested in determining
if the simpler representation of Pong will allow the Breakout
environment to quickly learn and adapt.

3. Environment Overview
We have chosen the initial environments after evaluating

the similarity between games Pong and Breakout. In partic-
ular, Breakout was initially influenced by the wild success
of Pong, wherein both games involve controlling paddles to
hit balls. Due to the different orientations of the games, it
will be interesting to see how the learning models adapts as
different layers are transferred from one agent to another.

3.0.1. PONG

Figure 1. Atari Pong
Pong is a table tennis sports game in which the player

or agent controls a paddle located across the right side of
the screen that interacts with a bouncing ball. The game
is played in a closed environment where the ball bounces
off the bounds of the table. Players attempt to score by
moving the ball past the opposing paddle. The pong scoring
objective is defined as the difference between the player’s
score (or lives) and the opponent’s score.

3.0.2. BREAKOUT

Figure 2. Atari Breakout

In Breakout, the player or agent controls a paddle lo-
cated across the bottom of the screen to hit a ball, deflecting
it upwards into the center of the game screen. The objective
is to use the ball and paddle to interact with a series of bricks
located at the top of the screen. A ball travels across the
screen, bouncing off the top and side walls of the screen,
just as in pong. When a brick is hit, the ball bounces away
and the brick is destroyed, and points are earned. The player
loses a turn when the ball touches the bottom of the screen.

4. Approach
4.1. DQN

We have set up a game environment using OpenAI
Gym (Brockman et al., 2016), a toolkit for developing and
comparing reinforcement learning algorithms. We use an
architecture from which we can easily plug and play various
games and load in saved modules, selectively resetting
weights. We model our implementation to follow a double
dueling deep q-network with experience replay and fixed
targets (Graetz, 2018).

4.2. Q-Learning
Q-learning is the process of learning a mapping from

state s to the optimal action a. In particular, we define the
optimal action-value function Q∗(s, a) as the maximum ex-
pected return upon visiting state s and taking action a, which
equals the current reward r in addition to the discounted
maximum future returns in next state s′:

Q∗(s, a) = r + γmaxQ∗(s′, a′) (1)

Deep Q-Learning is then a specific class of Q-learning
that uses a neural network to learn θ in an approximation
Q(s, a; θ) for Q∗(s, a).
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4.3. Experience Replay
Consecutive samples have strong correlations, as on-

policy learning means that the current parameters directly
influence the next data sampled, which are then used to fur-
ther train the parameters. This leads to inefficient learning
and unwanted feedback loops that can result in parameters
stuck in local minimums. Replay memory aims to mitigate
both these issues by storing the most recent sampled (a, s′)
in the replay buffer rather than learning immediately from
it, instead drawing a random minibatch from the buffer to
train on.

4.4. Fixed Targets
When performing the gradient descent step, we aim to

minimize loss

L = 0.5(Qpred −Qtarget)
2 (2)

where Qtarget = r + γmaxQ(s′, a′; θ) and is calculated
using the same parameters used to estimate Qpred. This can
lead to instability as Qpred is regressing towards a moving
target; the target can be ”fixed” by introducing a second net-
work, with parameters only periodically updated, to estimate
target Q-values. Thus, we have main network parameters
θmain, and the periodically updated θtarget used to calcu-
lated Qtarget.

4.5. Double Q-Learning
Double Q-Learning aims to mitigate maximization bias,

which leads to unrealistically high Q-values. Specifically,
maximization bias comes from the expectation of a max-
imum being greater than or equal to the maximum of the
expectation. To prevent this, two separate sets of weights
are used to estimate the next state values. We use θmain to
estimate which next action a′ is best, and θtarget to estimate
the Q-value of that selected action. As the two networks
have different noise, the bias towards larger noisy Q-values
cancels. The final Q-value update is:

a′main = argmax
a′

Q(s′, a′; θmain)

Qtarget(s, a) = r + γQ(s′, a′main; θtarget)

The main network parameters are then periodically copied
over to update the target network.

4.6. Dueling Networks
The dueling network architecture has the same low-level

convolutional structure as a normal DQN, but then splits
the final convolutional layer into separate arms predicting
the value function V (s) and advantage function A(s, a),
rather than a single fully-connected layer directly predicting
Q-values. Dueling networks have been shown to improve
training stability (Wang et al., 2015) because they adds ad-
ditional information about the composition of action-values
during estimation. Dueling architectures learn the state-
value function efficiently because every Q-value update

involving state s additionally updates the value stream at
V (s). In contrast, a single-stream architecture updates only
the value corresponding to the one action taken, leaving the
remaining action values untouched.

Below, V (s) estimates how good being in state s is,
while A(s, a) estimates how good performing action a in
state s is, and Q(s, a) estimates the total value of being in
state s and performing action a. The value and advantage
functions are them combined into the final Q estimate as:

Q(s, a) = V (s) +A(s, a)− 1/|A|
∑
a′

A(s, a′) (3)

Figure 3. Standard DQN (top) vs Dueling DQN (bottom) (Wang
et al., 2015)

4.7. IMPALA
One shortcoming with the approaches outlined above

is that training is not parallelized across multiple machines,
and thus does not take advantage of modern hardware setups.
The Importance Weighted Actor-Learner Architecture (IM-
PALA) agent (Espeholt et al., 2018), which is an improved
version of the Asynchronous Advantage Actor-Critic (A3C)
method (Mnih et al., 2016), addresses this.

In the A3C training routine, there is a parameter server
and multiple actors. Each actor individually performs ex-
ploration and periodically shares gradients back to the pa-
rameter server. In IMPALA, the actors do not perform
gradient computations and instead solely collect experience,
which is sent to a central learner. However, this makes the
actors lag behind the learner, so the IMPALA agent also
introduces an off-policy correction called V-trace, allowing
experiences from off-policy routines to be incorporated into
the current policy’s updates. We observe that IMPALA has
higher throughput than other actor-critic agents, so with
enough workers it trains models on the Atari environment
very quickly. Application of transfer learning to IMPALA
will allow us to observe the effects of transfer learning in an
architecture where off-policy exploration is a much larger
factor than in the standard DQN architecture.
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4.8. Transfer Learning
Our hypothesis is that since Pong and Breakout have

similar objectives of deflecting a ball-like object using an
agent-controlled paddle to score points, transfer learning
should speed up convergence and improve model perfor-
mance. We experiment with transferring the saved weights
from the convolutional layers of an agent trained from
scratch on one environment onto a different environment.

5. Results
5.1. Experiments
5.1.1. ENVIRONMENT

In order to allow the agent to recognize the game state
at any point in time, the state space will consist of four
input frames, as noted in the original Atari Deepmind paper
(Mnih et al., 2013). This is because, for example, from a
single frame of the game Pong, the agent cannot discern in
which direction the ball moves. From a stacked sequence
of frames, the agent is able to detect factors such as the
direction and speed of movement.

In the OpenAI Gym environment, a frame returned by
the environment has a (210,160,3) shape, representing a
210x160 pixel sized screen with 3 RGB color channels. We
then transform each frame into a (84,84,1) grayscaled frame.
This allows us to quickly process data and play games much
faster than if we processed games in the original input space.

Our various agents are built from the Ray (Moritz et al.,
2017) implementation of double dueling DQN and IMPALA
(Espeholt et al., 2018), as well as an open sourced agent and
environment based on Deepmind’s paper (Graetz, 2018).

We apply transfer learning across the convolutional lay-
ers of three architectural configurations. We focus on trans-
ferring the convolutional layers because feature detection
between games is agnostic to game control mechanics. As
explored by Asawa et al.(Chaitanya Asawa, 2017), trans-
ferring all layers (including affine layers) resulted in poor
training performance, and ultimately resulted in models that
were not able to converge during the training period.

4-conv DQN: We use a 4 layer convolutional stack fol-
lowed by a value-advantage layer prior to computing Q
values, and a replay batch size of 50K. The conv layer con-
figurations are as follows:

conv1: filters=32, kernel_size=[8, 8],
stride=4
conv2: filters=64, kernel_size=[4, 4],
stride=2
conv3: filters=64, kernel_size=[3, 3],
stride=1
conv4: filters=6, kernel_size=[7, 7],
stride=1

3-conv DQN, 3-conv IMPALA: We use a 3 layer con-
volutional stack with a larger kernel size for the 3rd layer,
followed by a value-advantage layer prior to computing Q

values. The conv layer configurations are as follows:
conv1: filters=16, kernel_size=[8, 8],
stride=4
conv2: filters=32, kernel_size=[4, 4],
stride=2
conv3: filters=256, kernel_size=[11, 11],
stride=1

We compare training time, performance, and conver-
gence of the following experiments, using pre-trained
weights on Pong as a seed for training Breakout (and vice
versa):

• Baseline: Re-initialize and retrain all layers (no trans-
fer learning)

• Transferring weights from certain convolutional layers
and re-initializing other layers as normal

• Training on varying convolutional layer depths (3 vs.
4 layers for DQN)

5.2. 4-conv DQN
In this environment, we experimented with training

from scratch, transferring all convolutional weights, and
transferring the convolutional weights from just the first
layer. We observe that transferring the convolutional
weights from the first convolutional layer provided the best
improvement to evaluation performance, compared to the
other methods.

5.2.1. PONG 4-CONV DQN

Figure 4. Pong on 4-conv DQN architecture; comparison between
no transfer (orange), transferring first conv layer only (grey), and
transferring all conv layers (red)

We observe that initializing the first convolutional layer
with weights learned from Breakout allows training on Pong
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to converge in significantly fewer iterations than when trans-
ferring all convolutional layers or when training all lay-
ers from scratch. In particular, when we transfer the first
convolutional layer only, the agent is able to achieve the
asymptotic mean reward within 2M frames of iterations,
compared to similar convergence behavior starting 3.5M
iterations when transferring on all convolutional layers, or
approximately 4.5M iterations with no transfer learning at
all. Transferring weights from only the first convolutional
layer of Breakout to Pong resulted in an almost 2x speedup
in convergence compared to the vanilla training method.
However, both models achieve the same max mean reward.

5.2.2. BREAKOUT 4-CONV DQN
We observe improvements in training behavior when

transferring Pong weights to assist with Breakout training,
although the advantage is less pronounced. When the
training routine transfers just the first convolutional
layer, Breakout achieves a higher reward earlier; at 10M
iterations, the conv1 experiment reaches a reward of around
130, while transferring all convolutional layers reaches a
reward of around 110 and training from scratch around 90.
Although less pronounced, these experiments illustrate that
transferring the convolutional layers from Breakout to Pong
does provide a noticeable boost in convergence.

Figure 5. Breakout on 4-conv DQN architecture; comparison be-
tween no transfer (green), transferring first conv layer only (or-
ange), and transferring all conv layers (blue)

5.3. 3-conv DQN
For 3-convolutional layer DQN experiments, we used

the Ray environment (Moritz et al., 2017). Note that iter-
ations are not comparable between 4-conv and 3-conv ex-
periments due to differing learning behaviors caused by the

different architectures. We experiment with training from
scratch vs transferring all convolutional weights, and found
that transfer learning led to noticably improved convergence
characteristics in both environments.

5.3.1. PONG 3-CONV DQN

Figure 6. Pong on 3-conv DQN architecture; comparison between
no transfer (orange) and transferring all conv layers (pink)

We observe an earlier convergence when transferring all
convolutional layers vs training from scratch in the 3-conv
Pong experiments. Specifically, learning after transferring
all weights converges at roughly 800K iterations, while the
no transfer counterpart is still learning at 1.6M, twice the
number of iterations later. Once again we see training con-
verge to an optimum score approximately 2x faster when
we transfer the convolutional weights. However, both mod-
els achieve the same max mean reward.

5.3.2. BREAKOUT 3-CONV DQN
When we transfer the convolutional layer weights from

Pong to improve Breakout training, we see a clear improve-
ment in training characteristics: the transfer learned model
achieves a reward of 240 at 3.5M iterations while the model
that had to learn from scratch only has a reward of 100 at
that time. However, neither model is able to achieve higher
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mean rewards on Breakout.

Figure 7. Breakout on 3-conv DQN architecture; comparison be-
tween no transfer (blue) and transferring all conv layers (green)

5.4. 3-conv IMPALA
As with the 3-conv DQN section, we trained IMPALA

agents on Pong and Breakout from scratch, and with trans-
ferred convolutional layer weights. Vanilla IMPALA with
no transfer learning trains models very quickly due to its
distributed architecture, and in Breakout is able to achieve
higher mean rewards than the DQN counterpart. However,
we observe that transfer learning does not work as well in
the distributed IMPALA environment compared to the DQN
agents. For these experiments we use 4 Tesla V100 GPUs
and 128 CPU cores.

5.4.1. PONG IMPALA

Figure 8. Pong on 3-conv IMPALA architecture; comparison be-
tween no transfer (orange) and transferring conv layers (light blue)

IMPALA reaches an asymptotic mean reward of 16-17
in about 22 minutes or 9.3M iterations (again, note that the
iteration count is not comparable between different agent
architectures). However, it appears that performing transfer
learning from a network trained to play Breakout causes
the Pong IMPALA training to stall. We observe the mean
reward climbs slightly until iteration 1.5M and then stops
increasing. We experimented with various checkpoints of
Breakout weights (weights from the beginning, middle, and
end of Breakout training) and transferring just the weights
from the first convolutional layer to no further success. All
experiments resulted in the same outcome: IMPALA failed
to learn the Pong environment once it had already learned
the Breakout task. We believe that because the IMPALA
Breakout agent achieved much higher mean and max reward
in the Breakout game environment compared to the DQN
Breakout agents, the weights present in the convolutional
layers are over-tuned to the Breakout environment. As a
result, when we transfer the IMPALA Breakout weights to
a Pong agent, IMPALA fails to adjust to search over the
modified convolutional domain with fixed initial learning
rates.

5.4.2. BREAKOUT IMPALA

Figure 9. Breakout on 3-conv IMPALA architecture; comparison
between no transfer (blue) and transferring conv layers (red)

We observe IMPALA reaches a mean reward of 450 and
a max reward of 850 in just 45 minutes or 20M iterations in
the Breakout environment. We then transferred the weights
from the first two convolutional layers of a Pong IMPALA
agent. The resulting reward curve appears to have simi-
lar performance as a Breakout agent trained from scratch,
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reaching a mean reward of 450 and a max reward of 850 in
19M iterations. We theorize that IMPALA is able to rapidly
learn good weights for the convolutional layers in the more
complex Breakout environment with both vanilla initializa-
tion and transferred convolutional weights from the simpler
Pong environment.

6. Conclusion
We have empirically shown that for DQN, transferring

the weights from either the first or all convolutional lay-
ers, depending on the total number of convolutional layers
in the network, helps improve training time. We see that
transferring different convolutional layers can yield better
convergence criteria, depending on the complexity of the
architecture and similarity of the transference domains.

While we have shown better convergence behavior,
asymptotic performance was not noticeably improved,
which suggested that transfer learning is a good candidate
to incorporate into models and routines that attempt to mini-
mize poor decisions in the training process, as in the case of
safe reinforcement learning and few-shot learning.

For IMPALA, we have shown that transfer learning
does not provide any benefit over training from scratch. In
fact, for Pong, transferring the convolutional weights from
Breakout actually causes training to stall. Further work is
required to examine this discrepancy.

7. Future Work
As we have shown success in transfer learning in the

context of games Pong and Breakout, we would like to ex-
pand the pool of games and explore fine tuning approaches
in transfer learning contexts to determine game mechanics
and environments that make transfer learning difficult. Ad-
ditionally, we believe that transfer learning combined with
multi-task learning models could lead to few-shot learning
models that are able to quickly adapt to new environments.

Adjusting learning rates between different game con-
texts is also a point of interest, as the weight domain that
transfer learning agents must explore is noticeably different
than a randomly initialized domain.
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